1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
use std::ops::Range;

use advent_of_code::errors::Result;

use self::{
    point::Point,
    range::{Contains, RangeExt},
    sensor::Sensor,
};

mod point;
mod range;
mod sensor;

fn print_sensors(v: &Vec<Sensor>, max: isize) {
    for y in 0..=max {
        for x in 0..=max {
            let p = (x, y).into();
            let c = if v.iter().find(|s| s.is_inside(&p)).is_some() {
                '#'
            } else {
                '.'
            };
            print!("{}", c)
        }
        println!()
    }
}

pub fn solution_pt1<S: AsRef<str>, L: Iterator<Item = S>>(lines: L, row: isize) -> Result<usize> {
    let mut sensors: Vec<Sensor> = lines
        .filter(|l| !l.as_ref().trim().is_empty())
        .map(|l| l.as_ref().parse())
        .collect::<Result<_>>()?;

    // sensors.sort_unstable_by(|a, b| {
    //     let a = row - a.pos().y;
    //     let b = row - b.pos().y;
    //     a.abs().cmp(&b.abs())
    // });
    sensors.retain(|s| {
        row <= s.pos().y + s.distance_to_beacon() && row >= s.pos().y - s.distance_to_beacon()
    });
    println!("{:?}", sensors);

    let min_x = sensors
        .iter()
        .flat_map(|s| [s.pos(), s.beacon()])
        .min_by(|a, b| a.x.cmp(&b.x))
        .ok_or("Couldn't find min x")?;

    let max_x = sensors
        .iter()
        .flat_map(|s| [s.pos(), s.beacon()])
        .max_by(|a, b| a.x.cmp(&b.x))
        .ok_or("Couldn't find max x")?;

    let max_dist = sensors
        .iter()
        .map(|s| s.distance_to_beacon())
        .max()
        .ok_or("Couldn't find max dist")?;

    let mut blocked = 0;
    //terribly inefficient
    for x in (min_x.x - max_dist)..(max_x.x + max_dist) {
        let p: Point = (x, row).into();
        if sensors.iter().find(|s| s.is_inside(&p)).is_some() {
            blocked += 1;
        }
    }
    Ok(blocked - 1)
}

pub fn solution_pt2<S: AsRef<str>, L: Iterator<Item = S>>(lines: L, max: isize) -> Result<usize> {
    let mut sensors: Vec<Sensor> = lines
        .filter(|l| !l.as_ref().trim().is_empty())
        .map(|l| l.as_ref().parse())
        .collect::<Result<_>>()?;

    sensors.sort_unstable_by(|a, b| {
        let a_y = a.pos().y - a.distance_to_beacon();
        let b_y = b.pos().y - b.distance_to_beacon();
        a_y.cmp(&b_y)
    });
    // let sensors: VecDeque<Sensor> = sensors.into_iter().collect();
    for y in 0..max {
        let mut row: Vec<Range<isize>> = Vec::new();
        for s in sensors.iter() {
            if let Some(s) = s.x_range(y) {
                row.push(s);
            }
        }
        row.sort_unstable_by(|a, b| a.compare(b));
        // println!("{:?}", row);
        row = row.into_iter().fold(Vec::new(), |mut accum, s| {
            // println!("\t{:?}", s);
            let v = accum
                .iter_mut()
                .find_map(|r| r.clone().merge(s.clone()).map(|k| (r, k)));
            if let Some((r1, r2)) = v {
                *r1 = r2;
            } else {
                accum.push(s);
            }

            accum
        });
        let search = 0..max;
        // Looking for a row that doesn't cantain 0..max
        let is_blocked = row
            .iter()
            .any(|r| matches!(r.contains_range(&search), Some(Contains::Full)));
        if !is_blocked {
            let pos: Point = (row[0].end + 1, y).into();
            println!("{}", pos);
            return Ok(pos.x as usize * 4_000_000 + pos.y as usize);
        }
        // println!("{:?}", row);
    }

    // let blocked_points: HashSet<Point> = sensors.iter().flat_map(|s| s.blocked_points()).collect();
    // println!("Built {}", blocked_points.len());
    //
    // for y in 0..=max {
    //     for x in 0..=max {
    //         let p: Point = (x, y).into();
    //         if !blocked_points.contains(&p) {
    //             println!("{}", p);
    //             return Ok(p.x as usize * 4_000_000 + p.y as usize);
    //         }
    //     }
    // }

    // println!("{}", sensors[6]);
    // for p in sensors[6].blocked_points() {
    //     println!("{}", p);
    // }

    // new strategy is to condense the above structure into a list of ranges

    // let beacons = sensors.iter().fold(HashMap::new(), |mut accum, s| {
    //     let v = accum.entry(*s.beacon()).or_insert(Vec::new());
    //     v.push(*s.pos());
    //     accum
    // });

    // for y in 0..=max {
    //     for x in 0..=max {
    //         let p: Point = (x, y).into();
    //
    //         let is_blocked = sensors.iter().any(|s| {
    //             let dist = s.pos().manhatten_distance_to(&p);
    //             dist <= s.distance_to_beacon()
    //         });
    //
    //         if !is_blocked {
    //             println!("{}", p);
    //             return Ok(p.x as usize * 4_000_000 + p.y as usize);
    //         }
    //     }
    // }
    Err("Beacon Not Found".into())
}

#[cfg(test)]
mod tests {
    use super::{solution_pt1, solution_pt2};

    const PAGE_EXAMPLE: &str = r#"
Sensor at x=2, y=18: closest beacon is at x=-2, y=15
Sensor at x=9, y=16: closest beacon is at x=10, y=16
Sensor at x=13, y=2: closest beacon is at x=15, y=3
Sensor at x=12, y=14: closest beacon is at x=10, y=16
Sensor at x=10, y=20: closest beacon is at x=10, y=16
Sensor at x=14, y=17: closest beacon is at x=10, y=16
Sensor at x=8, y=7: closest beacon is at x=2, y=10
Sensor at x=2, y=0: closest beacon is at x=2, y=10
Sensor at x=0, y=11: closest beacon is at x=2, y=10
Sensor at x=20, y=14: closest beacon is at x=25, y=17
Sensor at x=17, y=20: closest beacon is at x=21, y=22
Sensor at x=16, y=7: closest beacon is at x=15, y=3
Sensor at x=14, y=3: closest beacon is at x=15, y=3
Sensor at x=20, y=1: closest beacon is at x=15, y=3
"#;
    #[test]
    fn page_example_1() {
        let actual = solution_pt1(PAGE_EXAMPLE.lines(), 10).unwrap();
        assert_eq!(actual, 26)
    }

    #[test]
    fn page_example_2() {
        let actual = solution_pt2(PAGE_EXAMPLE.lines(), 20).unwrap();
        assert_eq!(actual, 56_000_011)
    }
}